3.1.85 \(\int \cos ^2(e+f x) (a+a \sin (e+f x))^m (c-c \sin (e+f x))^{-1-m} \, dx\) [85]

Optimal. Leaf size=114 \[ \frac {2^{\frac {1}{2}-m} c \cos ^3(e+f x) \, _2F_1\left (\frac {1}{2} (1+2 m),\frac {1}{2} (3+2 m);\frac {1}{2} (5+2 m);\frac {1}{2} (1+\sin (e+f x))\right ) (1-\sin (e+f x))^{\frac {1}{2}+m} (a+a \sin (e+f x))^m (c-c \sin (e+f x))^{-2-m}}{f (3+2 m)} \]

[Out]

2^(1/2-m)*c*cos(f*x+e)^3*hypergeom([1/2+m, 3/2+m],[5/2+m],1/2+1/2*sin(f*x+e))*(1-sin(f*x+e))^(1/2+m)*(a+a*sin(
f*x+e))^m*(c-c*sin(f*x+e))^(-2-m)/f/(3+2*m)

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {2920, 2824, 2768, 72, 71} \begin {gather*} \frac {c 2^{\frac {1}{2}-m} \cos ^3(e+f x) (1-\sin (e+f x))^{m+\frac {1}{2}} (a \sin (e+f x)+a)^m (c-c \sin (e+f x))^{-m-2} \, _2F_1\left (\frac {1}{2} (2 m+1),\frac {1}{2} (2 m+3);\frac {1}{2} (2 m+5);\frac {1}{2} (\sin (e+f x)+1)\right )}{f (2 m+3)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m*(c - c*Sin[e + f*x])^(-1 - m),x]

[Out]

(2^(1/2 - m)*c*Cos[e + f*x]^3*Hypergeometric2F1[(1 + 2*m)/2, (3 + 2*m)/2, (5 + 2*m)/2, (1 + Sin[e + f*x])/2]*(
1 - Sin[e + f*x])^(1/2 + m)*(a + a*Sin[e + f*x])^m*(c - c*Sin[e + f*x])^(-2 - m))/(f*(3 + 2*m))

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2768

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[a^2*(
(g*Cos[e + f*x])^(p + 1)/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2))), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 2824

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[a^IntPart[m]*c^IntPart[m]*(a + b*Sin[e + f*x])^FracPart[m]*((c + d*Sin[e + f*x])^FracPart[m]/Cos[e + f*x]^(2*
FracPart[m])), Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (FractionQ[m] ||  !FractionQ[n])

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps

\begin {align*} \int \cos ^2(e+f x) (a+a \sin (e+f x))^m (c-c \sin (e+f x))^{-1-m} \, dx &=\frac {\int (a+a \sin (e+f x))^{1+m} (c-c \sin (e+f x))^{-m} \, dx}{a c}\\ &=\left (\cos ^{-2 m}(e+f x) (a+a \sin (e+f x))^m (c-c \sin (e+f x))^m\right ) \int \cos ^{2 (1+m)}(e+f x) (c-c \sin (e+f x))^{-1-2 m} \, dx\\ &=\frac {\left (c^2 \cos ^{1-2 m+2 (1+m)}(e+f x) (a+a \sin (e+f x))^m (c-c \sin (e+f x))^{m+\frac {1}{2} (-1-2 (1+m))} (c+c \sin (e+f x))^{\frac {1}{2} (-1-2 (1+m))}\right ) \text {Subst}\left (\int (c-c x)^{-1-2 m+\frac {1}{2} (-1+2 (1+m))} (c+c x)^{\frac {1}{2} (-1+2 (1+m))} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac {\left (2^{-\frac {1}{2}-m} c^2 \cos ^{1-2 m+2 (1+m)}(e+f x) (a+a \sin (e+f x))^m (c-c \sin (e+f x))^{-\frac {1}{2}+\frac {1}{2} (-1-2 (1+m))} \left (\frac {c-c \sin (e+f x)}{c}\right )^{\frac {1}{2}+m} (c+c \sin (e+f x))^{\frac {1}{2} (-1-2 (1+m))}\right ) \text {Subst}\left (\int \left (\frac {1}{2}-\frac {x}{2}\right )^{-1-2 m+\frac {1}{2} (-1+2 (1+m))} (c+c x)^{\frac {1}{2} (-1+2 (1+m))} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac {2^{\frac {1}{2}-m} c \cos ^3(e+f x) \, _2F_1\left (\frac {1}{2} (1+2 m),\frac {1}{2} (3+2 m);\frac {1}{2} (5+2 m);\frac {1}{2} (1+\sin (e+f x))\right ) (1-\sin (e+f x))^{\frac {1}{2}+m} (a+a \sin (e+f x))^m (c-c \sin (e+f x))^{-2-m}}{f (3+2 m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.
time = 24.32, size = 857, normalized size = 7.52 \begin {gather*} -\frac {2^{2-m} (-3+2 m) \left (F_1\left (\frac {1}{2}-m;-2 m,1;\frac {3}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )-4 F_1\left (\frac {1}{2}-m;-2 m,2;\frac {3}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )+4 F_1\left (\frac {1}{2}-m;-2 m,3;\frac {3}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )\right ) \cos ^{1-2 m}\left (\frac {1}{4} (2 e+\pi +2 f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^{2 (1+m)} (a (1+\sin (e+f x)))^m (c-c \sin (e+f x))^{-m} \sin ^2\left (\frac {1}{4} (2 e+\pi +2 f x)\right )}{c f (-1+2 m) (-1+\sin (e+f x)) \left ((-3+2 m) F_1\left (\frac {1}{2}-m;-2 m,1;\frac {3}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )+2 \left ((6-4 m) F_1\left (\frac {1}{2}-m;-2 m,2;\frac {3}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )+(-6+4 m) F_1\left (\frac {1}{2}-m;-2 m,3;\frac {3}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )+\left (2 m F_1\left (\frac {3}{2}-m;1-2 m,1;\frac {5}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )-8 m F_1\left (\frac {3}{2}-m;1-2 m,2;\frac {5}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )+8 m F_1\left (\frac {3}{2}-m;1-2 m,3;\frac {5}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )+F_1\left (\frac {3}{2}-m;-2 m,2;\frac {5}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )-8 F_1\left (\frac {3}{2}-m;-2 m,3;\frac {5}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )+12 F_1\left (\frac {3}{2}-m;-2 m,4;\frac {5}{2}-m;\tan ^2\left (\frac {1}{8} (-2 e+\pi -2 f x)\right ),-\tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )\right ) \tan ^2\left (\frac {1}{8} (2 e-\pi +2 f x)\right )\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^m*(c - c*Sin[e + f*x])^(-1 - m),x]

[Out]

-((2^(2 - m)*(-3 + 2*m)*(AppellF1[1/2 - m, -2*m, 1, 3/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*
f*x)/8]^2] - 4*AppellF1[1/2 - m, -2*m, 2, 3/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2]
 + 4*AppellF1[1/2 - m, -2*m, 3, 3/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2])*Cos[(2*e
 + Pi + 2*f*x)/4]^(1 - 2*m)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^(2*(1 + m))*(a*(1 + Sin[e + f*x]))^m*Sin[(2*
e + Pi + 2*f*x)/4]^2)/(c*f*(-1 + 2*m)*(-1 + Sin[e + f*x])*(c - c*Sin[e + f*x])^m*((-3 + 2*m)*AppellF1[1/2 - m,
 -2*m, 1, 3/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2] + 2*((6 - 4*m)*AppellF1[1/2 - m
, -2*m, 2, 3/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2] + (-6 + 4*m)*AppellF1[1/2 - m,
 -2*m, 3, 3/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2] + (2*m*AppellF1[3/2 - m, 1 - 2*
m, 1, 5/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2] - 8*m*AppellF1[3/2 - m, 1 - 2*m, 2,
 5/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2] + 8*m*AppellF1[3/2 - m, 1 - 2*m, 3, 5/2
- m, Tan[(-2*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2] + AppellF1[3/2 - m, -2*m, 2, 5/2 - m, Tan[(-2
*e + Pi - 2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2] - 8*AppellF1[3/2 - m, -2*m, 3, 5/2 - m, Tan[(-2*e + Pi -
2*f*x)/8]^2, -Tan[(2*e - Pi + 2*f*x)/8]^2] + 12*AppellF1[3/2 - m, -2*m, 4, 5/2 - m, Tan[(-2*e + Pi - 2*f*x)/8]
^2, -Tan[(2*e - Pi + 2*f*x)/8]^2])*Tan[(2*e - Pi + 2*f*x)/8]^2))))

________________________________________________________________________________________

Maple [F]
time = 0.23, size = 0, normalized size = 0.00 \[\int \left (\cos ^{2}\left (f x +e \right )\right ) \left (a +a \sin \left (f x +e \right )\right )^{m} \left (c -c \sin \left (f x +e \right )\right )^{-1-m}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^(-1-m),x)

[Out]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^(-1-m),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^(-1-m),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^m*(-c*sin(f*x + e) + c)^(-m - 1)*cos(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^(-1-m),x, algorithm="fricas")

[Out]

integral((a*sin(f*x + e) + a)^m*(-c*sin(f*x + e) + c)^(-m - 1)*cos(f*x + e)^2, x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**m*(c-c*sin(f*x+e))**(-1-m),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 5008 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^m*(c-c*sin(f*x+e))^(-1-m),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m*(-c*sin(f*x + e) + c)^(-m - 1)*cos(f*x + e)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{m+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^m)/(c - c*sin(e + f*x))^(m + 1),x)

[Out]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^m)/(c - c*sin(e + f*x))^(m + 1), x)

________________________________________________________________________________________